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• Hadley ascent area projected to decrease with warming 

• Large CMIP5 intermodel spread in tightening response

• Cloud-circulation coupling – similar interannual vs. forced warming
• Imperative to regional and global precipitation changes

Motivation
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• What physical processes contribute most to the intermodel
spread in Hadley ascent area and high cloud changes under 
warming in CMIP5 models?

• What are the dominant physics linking Hadley ascent area and 
high cloud changes under warming?

Questions
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• Two parameter perturbation experiments
• Cloud physics experiment (CLD)
• Convective experiment (CNV)
*Perturbed one at a time within ranges cited in Zhao et 
al. (2013), Qian et al. (2015)

• NCAR CESM1.2.2 Atmosphere-Only (CAM5.3) 
at 2o

• Results shown from 1995-2005 monthly 
output (interannual only)
• Analysis performed from 20oS-20oN
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Parameter Description Category Values (units)

dmpdz Fractional rate of entrainment Deep convection 0.08, 0.16, 0.25, 0.5, 1*, 1.5 (km-1)

alpha Downdraft fraction Deep convection 0.1*, 0.25, 0.5, 0.75 

tau Convective timescale Deep convection 30, 60*, 120, 180 (min)

ke Evaporation efficiency Deep convection 0.1, 0.5, 1*, 5, 10 (10-6 kg m-2s-1)-1/2s-1

cldfrc_rhminh Threshold RH for high-level clouds macrophysics 0.65, 0.8*, 0.85

cldfrc_rhminl Threshold RH for low-level clouds macrophysics 0.8, 0.8875*, 0.99

cldwatmi_ai Fall speed parameter for stratiform ice microphysics 350, 700*, 1400 (s-1)

cldwatmi_as Fall speed parameter for stratiform snow microphysics 5.86, 11.72*, 23.44 (m0.59 s−1)

cldwatmi_dcs Autoconversion size threshold ice - snow microphysics 0.0001, 0.0004*, 0.0005 (m)

cldwatmi_eii Collection efficiency, ice aggregation microphysics 0.001, 0.1*, 1

cldwatmi_qcvar Inverse relative variance of cloud water microphysics 0.5, 2*, 5 

micropa_wsubimax Max subgrid scale w for ice nucleation microphysics 0.1, 0.2*, 1 (m s-1)

micropa_wsubmin Min subgrid scale w for liquid nucleation microphysics 0, 0.2*, 1 (m s-1)

D_ice Radius of detrained ice, deep convection microphysics 10, 25*, 50 (um)
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RESULTS

• Perturbing convection produces very similar cloud-circulation response as 
CMIP5 models

• Cloud response different
• Both CLD and CNV parameters create large spread in the response of 

Hadley ascent width
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RESULTS

• Perturbing convection produces very similar cloud-circulation response as 
CMIP5 models

• Cloud response different
• Both CLD and CNV parameters create large spread in the response of 

Hadley ascent width – convection larger
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RESULTS

• Perturbing convection produces very similar cloud-circulation response as 
CMIP5 models

• Cloud response different
• Both CLD and CNV parameters create large spread in the response of 

Hadley ascent width – convection larger
• Suggests differing strengths of physical pathways linking clouds and 

convection to circulation
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Strong coupling between Hadley cell ascent strength and ascent area.
Physical processes within ascent region likely dominant in determining ascent 
width (e.g. Byrne and Schneider 2016; Popp and Silvers 2017; Su et al. 2018; 
Byrne et al. 2018; Albern et al. 2018)
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Strong coupling between Hadley cell ascent strength and ascent area.
Physical processes within ascent region likely dominant in determining ascent 
width (e.g. Byrne and Schneider 2016; Popp and Silvers 2017; Su et al. 2018; 
Byrne et al. 2018; Albern et al. 2018)

*Larger range in the response for CNV than CLD
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* Mean state (e.g. 
moisture, temperature) 
matters

-5 0 5
1/Fp>10 dFp>10/dTs (% K-1)

-5

0

5

10

15

1/
a d

a/d
T

s (%
 K

-1
)

R = -0.8

-5 0 5
1/Fp<10 dFp<10/dTs (% K-1)

-5

0

5

10

15

1/
a d

a/d
T

s (%
 K

-1
)



-10 -5 0 5
1/P>4 dP>4/dT (% K-1)

-8

-6

-4

-2

0

2
1/

H
C

F 
dH

C
F/

dT
 (%

 K
-1

) R = 
0.59

• Increasing deep convective frequency correlated to increase in cloud fraction in CNVRESULTS

Convective (CNV)

8/13



-10 -5 0 5
1/P>4 dP>4/dT (% K-1)

-8

-6

-4

-2

0

2
1/

H
C

F 
dH

C
F/

dT
 (%

 K
-1

) R = 
0.59

• Increasing deep convective frequency correlated to increase in cloud fraction in CNV

• Relation weaker in CLD
RESULTS

Cloud Physics (CLD)Convective (CNV)

8/13



-10 -5 0 5
1/P>4 dP>4/dT (% K-1)

-8

-6

-4

-2

0

2
1/

H
C

F 
dH

C
F/

dT
 (%

 K
-1

) R = 
0.59

• Increasing deep convective frequency correlated to increase in cloud fraction in CNV

• Relation weaker in CLD
RESULTS

*Increase convective frequency in warming, increase high cloud fraction in convective 
experiment. 
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RESULTS

*Increase convective frequency in warming, increase high cloud fraction in convective 
experiment. Why doesn’t this occur in the cloud physics experiment?
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How do clouds modify circulation?
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Thank you!

Questions/Comments/Ideas: 
kathleen.a.schiro@jpl.nasa.gov


